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Abstract-A crack in a semi-infinite plate of a functionally gradient material is studied under
thermal shock loading conditions. The crack faces are supposed to be completely insulated. All
material properties are assumed to be exponentially dependent on the distance from the crack line
parallel to the boundary of the plate. By using both the Laplace transform and the Fourier transform,
the thermal and mechanical problems are reduced to two systems of singular integral equations
which are solved numerically. The stress intensity factors vs time for various material constants are
calculated, The results show that by selecting the material constants appropriately, the stress
intensity factors can be reduced substantially.

I. INTRODUCTION

It is well known that in aerospace and nuclear engineering, many structural components
are subject to severe thermal loading which gives rise to intense thermal stresses in the
components especially around cracks and other kinds of defects. The concentration of
stresses around defects often results in catastrophe. In recent years, the concept of so-called
functionally gradient materials (FGM) has been introduced and applied to the development
of structural components (Koizumi, 1993). The advantages of FGM materials are that the
material can resist high temperatures effectively and, in the meantime, thermal stresses in
the material can be reduced significantly (Noda and Tsuji, 1990; Arai et al., 1991). The
interest in FGM research is growing rapidly due to these advantages. Usually FGM
materials are mixtures of ceramics and metals fabricated in such a way that the volume
fractions of the constituents are varied continuously in a predetermined composition profile.
The materials thus obtained have both mechanical and thermal nonhomogeneities. There
fore, the nonhomogeneous continuum theory can offer the basis for evaluating the mech
anical and thermal properties of FGM materials.

A few investigations on thermal stresses around cracks in nonhomogeneous materials
or FGM have been made. Among them are Erdogan and Wu (1993), Jin and Noda (1993a)
and Noda and Jin (1993), but only steady thermal loading was considered. It was found
that by selecting the material constants appropriately, the steady thermal stress intensity
factors can be lowered substantially (Jin and Noda, 1993a; Noda and Jin, 1993).

In this paper, a crack in a semi-infinite plate of a functionally gradient material
mathematically modeled by a nonhomogeneous solid is studied under transient thermal
loading conditions. It is assumed that initially the medium is at the uniform temperature zero
and is suddenly subjected to a uniform temperature To along the traction-free boundary. The
crack faces (parallel to the boundary) are supposed to remain completely insulated. We
assume that all material properties depend only on the coordinate y (perpendicular to the
crack faces) in such a way that the properties are some exponential functions of y. By
using both the Laplace transform and the Fourier transform, the thermal and mechanical
problems are reduced to two systems of singular integral equations. The equations are
solved numerically and the stress intensity factors vs time for various material constants
are calculated.
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2. BASIC EQUAnONS

As shown in Fig. I, consider a semi-infinite plate containing a through crack with its
length being 2c and denote by (x, y) the rectangular coordinate system with its origin at
the middle point of the crack face and x direction along with the crack line. It is assumed
that initially the medium is at the uniform temperature zero and is suddenly subjected to a
uniform temperature To along the traction-free boundary y = - a. The crack faces are
assumed to remain completely insulated.

The basic equations of nonhomogeneous solids expressed by the Airy stress function
F and the temperature Tare (Jin and Noda, 1993b)

(I)

? I I aT
V-T+-Vk'VT= ---

k K at'
(2)

where E and v are the Young's modulus and the Poisson's ratio, respectively; IY., k and K

are the coefficient of linear thermal expansion, the heat conductivity and the thermal
diffusivity, respectively. In eqns (1) and (2), V2 is the two dimensional Laplacian operator
and V is the gradient operator, respectively. In this study, we assume that the thermoelastic
coupling effect and the inertia effect are negligible and the problem thus considered is
uncoupled and quasi-static. The previous studies on the dynamic coupling thermoelastic
problems (Sternberg and Chakravorty, 1959; Noda et al., 1990) seem to support the above
assumption.

FGM materials usually are mixtures ofceramics (which have poorer heat conductivity
and lower thermal expansion) and metals (which have higher toughness and better heat
conductivity) for resisting high temperatures and reducing thermal stresses. Hence, from
the thermal loading conditions studied in this paper, it is reasonable to suppose that the
material possesses the following nonhomogeneous properties:

E = Eoexp (f3y),

IY. = 1Y.0 exp (yy),

v = vo(l +8Y) exp (f3y)

k = k oexp (by), K = Ko, (3)

where Eo, Vo, 1Y. 0 , k o, Ko and 13, 8, y, b are material constants. The function v(y) given in (3)
is subject to the restriction that 0 ~ v(y) ~ 0.5 for the region of y considered and using this
form of v(y) was justified by Delale and Erdogan (1988) in that the Poisson's ratio does
not significantly influence the stress intensity factors. In this study, it is assumed that Ii
takes negative values since in FGM materials the ceramic exposed to thermal shock usually
has higher elastic modulus than that of the metal. The condition is also consistent with the
requirement that v ~ 0.5. It is also assumed that the thermal diffusivity K is a constant. For
some materials, K indeed doesn't vary dramatically. The mechanical nonhomogeneities in
(3) were used by Delale and Erdogan (1988) and the spatial variation of E in (3) was
employed in fracture problems by a number of investigators, for example, Atkinson and
List (1978), Dhaliwal and Singh (1978), Delale and 'Erdogan (1983) and Herrmann and
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Fig. l. Crack geometry and coordinates.
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Schovanec (1990). Here we assume an exponential variation (3) of the material properties
for the entire half-plane because it is both easier for mathematical treatment and practically
reasonable if the crack is located not far from the boundary of the half-plane (i.e. the ratio
cia is not large).

By substituting (3) into (1) and (2) and referring to the following dimensionless
variables:

(u, v) = (u, v)/(rxoToc), eaP = eapl(rxoTo)

t = TITo, i = tl(c2IKo)

(x,y,a) = (x,y,a)/c, (p,e,y,S) = (p,e,y,(j)"C (4)

then the governing equations (1) and (2) reduce to equations with constant coefficients and
have the following dimensionless forms:

V2T "oT _oT (6)
+u oy - ot .

Here and in the following, the hat 1\ of the dimensionless variables is omitted for
simplicity. It is clear that the constant e in (3) is not included in the above basic equations.
Hence, e will not appear in the expression of the Airy function F and stresses.

The dimensionless constitutive relations are:

ou
a-;; = [-vo(1 + ey)O"y + exp (- Py)O"xl +exp (yy)T

ov
oy = [-vo(1 +ey)O"x+ exp (-PY)O"y] +exp (yy)T

AU ov
oy + ox = 2[vo(1+ey)+exp(-py)]O"xY'

The initial and the boundary conditions in dimensionless forms are:

(7)

and

T=O, t = 0, (8)

T= 1, y= -a, Ixl < 00, t>O

oT
oy = 0, y =0, Ixl ~ 1 (9a)

T(x,O+) = T(x, 0-),

oT(x,O+) oT(x, 0-)

oy oy

Ixl > 1

Ixl> 1 (9b)

for thermal conditions, and

T-+O, (10)
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0'.')' = O'y = 0,

0'.')' = O'y = 0,

y = 0,

y= -a,

Ixl ~ 1

Ixl < 00, (IIa)

O'.,{J --+ finite, (lIb)

O'xJx,O+) = O'x,'(x, 0-),

O'y(x,O+) = O',(x, 0-),

u(x,O+) = u(x, 0-),

v(x,O+) = v(x,O-),

Ixl > 1

Ixl > 1

Ixl> I

Ixl> I, (12)

for mechanical conditions.
Since e will not be included in the expressions of stresses as stated above, it is clear

from (7), (II) and (12) that ewill also not be included in the boundary conditions considered
in this study. Therefore, e will not affect the final results of stress intensity factors. Not
taking ejust as zero is due to the consideration that the Poisson's ratio may take a reasonable
value at the boundary y = - a.

3, TEMPERATURE FIELD

By applying the Laplace transform to (6) :

T*(x,y,p) = to T(x,y,t)exp(-pt)dt

T(x,y, t) = -2
1

. r T*(x,y,p) exp (pt) dp,
1tl JBr

(13)

where Br is the Bromwich path, an infinite line parallel to and to the right of the imaginary
axis in the Laplace transform plane (p-plane), and making use of the initial condition (8),
we have:

The boundary conditions in the p-plane are:

(14)

T* = lip,

aT*
ay = 0,

T*(x, 0+) = T*(x,O-),

oT*(x,O+) aT*(x,O
--------_._------

oy ay

T* --+ 0,

y = -a,

y = 0,

Ixl> I

Ixl> I

Ixl < 00

Ixl ~ I

(15)

The temperature field T*(x, y, p) in the p-plane can be expressed as:

T*(x,y,p) = n(y,p) + Tf(x,y,p),

where Tf(y, p) satisfies the following equation and boundary conditions,

(16)



Thermal stress intensity factors 207

(17)

n = lip,

n-+o,

whereas T!(x, y, p) is subject to the relations,

y= -a

y -+ et:J, (18)

aT*
V 2T*+<5-

2
-pT* = 02 ay 2 ,

(19)

T! = 0,

T! -+0,

aT! dn
ay - dy ,

T!(x,O+) = T!(x, 0-),

aT!(x,o+) aT!(x, 0-)

ay ay

y = 0,

Ixl > I

Ixl > 1.

Ixl < et:J

Ixl ~ I

(20)

It is easy to find from (17) and (18) that:

I ,
Tf(y,p) = -exp [-A(y+a)],

p

where A is given by:

(21)

(22)

Next, by applying the Fourier transform to (19) and using the boundary conditions (20),
we have:

T!(x,y,p) = L"'", D(~,p)exp(-f.12y-ix~) d~, y > 0, (23a)

in the above expressions, f.1i(i = I, 2) are:

y < 0, (23b)

(24)

and D(~, p) is expressed by the density function cp*(x, p) defined by:

*( ) = aT*(x, 0+ ,p) _ aT*(x, 0- ,p) _ aT!(x, 0+ ,p) _ aT!(x, 0- ,p)
cp X,p ax ax - ax ax'

as follows

(25)



208 Z.-H. liN and N. NODA

(26)

The density function q>*(x, p) satisfies the following singular integral equation:

f1 { I } 2 '- _.. +k*(x, r,p) q>*(r,p) dr = -nA. exp( -..ta),
•• 1 r-x p

and the condition:

f 1 q>*(X,p) dx = O.

In eqn (27), the Fredholm kernel k*(x, r, p) is given by:

Ixl ~ 1 (27)

(28)

(29)

In the singular integral equation theory, eqn (27) under the condition (28) has the
following form of the solution (Erdogan et al., 1973) :

* _ $*(x,p)
q> (x,p) - ,..----_,

.jl-x2
Ixl ~ 1, (30)

where $*(x, p) is a bounded and continuous function on the interval [-1, 1] with p being
a parameter. Once q>*(x, p) is obtained, the temperature field T*(x, y, p) in the Laplace
transform domain can be easily calculated. The temperature T(x, y, t) in the time domain
can be obtained from T*(x, y, p) by making inverse Laplace transform. This will be
discussed later in Section 5.

4. THERMAL STRESSES

We first consider the problem in the Laplace transform plane. In the p-plane, the basic
equation (5) becomes:

" :l2F*
'" , ()? 2{J

V-V'F*-2P-(V'F*)+P·--- =oy oy2
(31)

and the boundary conditions are the same as (11) and (12) with the understanding that
(11) and (12) are in the p-plane. The Laplace transforms of F, 11«fJ and u, v are F*, l1:fJ and
u*, v*, respectively.

The general solution of (31) satisfying the regular condition at infinity (11b) with the
temperature given by (16), (21) and (23) can be expressed as follows:

y>O, (32a)
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F*(x,y,p) = t: {(A t+A2.Y) + (A 3 +A 4y) exp (-25Y)} exp (-5ty-ix~) d~

- fXl
eo

{C21 +C22 exp (-2,uy)} exp [(p+y-,ut)y-ix~] d~,

209

y < 0, (32b)

in the above expressions, Bi(~' p)(i = 1, 2) and A;(~, p)(i = 1, 2, 3, 4) are unknown
functions, 5t, 52 are:

P
5 = - --5

t 2'
P

5 2 =-2+ 5, (33)

and CI2(~' p), C2t (~, p) and C22(~' p) are known functions given by:

Ct2(~'P) = [(P + y- ,u2)(Y - ,u2) - ~2] - 2[y 2+ P- (2y - c5),u2]D(~,p)

2 -2 2 ,u2D(~,p)
C2t(~,P) = [(P+}'-,ut)(y-,ut)-~] [y +p-(2y-c5),ud ,ut-,u2 exp(-2,ua)

2 2 2 ,u2exp(-2,ua)D(~,p)
C22(~'P) = [(P+y-,u2)(y-,u2)-~ ]- [(2y-c5),u2-y -p] ,ut-,u2 exP (-2,ua) . (34)

The particular solution of (31) due to Tt(y, p) is omitted since it doesn't influence the
singular character of stresses near the crack tip and the stress intensity factors.

The stresses in the Laplace transform domain can be obtained from the Airy function
(32) by the following well-known formulas:

a2F*
a* -x - ay2 '

a2F*
a* -

y - ax 2 '

a2F*
".* -
V X)' - - axay' (35)

but the detailed expressions are not given here.
The constitutive relations in the Laplace transform domain are:

au*----a; = [- vo(l +sy)a~+exp ( - py)a:] +exp (yy)T*

av*
oy = [-vo(l+sy)a:+exp(-py)ajJ+exp(yy)T*

ou* ov*
~ + ~ = 2[vo(l +sy) +exp (- py)]a_~"uy ux . (36)

By substituting from (35) into (36) with F* being given by (32), the displacements in
the p-plane can be obtained.

Introduce two dislocation density functions l/J;*(x,p) (i = 1,2) by:

.1,*( ) _ ou*(x, 0+ ,p) ou*(x, 0- ,p)
'1'1 X,p - ox - ox

.1,*( ) av*(x, 0+ ,p) ov*(x, 0- ,p)
'I' 2 x,p = ax - ax . (37)

By using the boundary conditions (II) and (12), it can be shown that l/Jf(x, p) (i = 1,2)
satisfy the following singular integral equations:



210 Z.-H. JIN and N. NODA

II 2 [ b·2: _,} +k;;(x, t)]l/Ij(t,p) dt = 4trL;*(x,p),
-lj=1 r-x i = 1,2, Ixl t::; I, (38)

and the conditions

II l/I;*(x,p) dx = 0,
-I

i = 1,2, (39)

in eqn (38), the Fredholm type kernels kij(x, r) (i,j = 1,2) are given by:

kll (x, t) =1": {1-4~};1(~)} sin [(x-r)~] d~

k22 (x,r) = 1~ {I-4,2.fd~)}sin[(x-r)']d'

kdx, r) = 1" -4,};2(') cos [(x-r),] d,

k21 (x,r) = 1'" 4,2hl(,)cos[(x-r)~]d~,

and the right-hand functions Lf(x, p) (i = 1,2) are:

I t::;x, r t::; I (40)

LT(x,p) = 21'" elT("p) sin (x,) d" Ixl t::; I

L!(x,p) = -21~ ,21!("p) cos (x,) d, Ixl t::; I (41)

(42)

in the expressions (40), (41) and (42), };;(,), hij(') (i,j = 1,2) and 9;(', p) (i = 1,2,3,4)
are given in Appendix A.

The solutions of integral eqns (38) have the following forms:

.i,?f'( ) = 'P;*(x,p)
'I'I X ,P ~-'

V l-x2
i = 1,2, Ixl ~ I (43)

where 'Pf(x, p) (i = 1,2) are continuous bounded functions in the interval [-I, l] with p
being a parameter.

The crack-tip stress field in the Laplace transform plane can be evaluated as a standard
square root singular field, Le.

(44)

where (r, 0) are the polar coordinates at the crack tip defined by:
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x=l+rcos9, y=rsin9, (45)

iT~fJ(9) and iT~~(9) are the angular distributions which can be found in any book on fracture
mechanics, for example, Sih (1977), and the dimensionless stress intensity factors Kt(p)
and K~ (p) in the p-plane are given by :

{KI*(p),K~(p)} = - f {'P1(I,p), 'Pf(l,p)} (46)

By applying the inverse Laplace transform to (38), (39), (41), (43), (44) and (46), the
integral equations and the crack tip stress field in the time domain are obtained as follows:

II 2 [ ().. ]L ~ +kij(x, t) l/Ij(t, t) dt = 41tL/(x, t),
-I j=1 t X

i = 1,2, Ixl ~ 1, (47)

i = 1,2, (48)

and

i = 1,2, Ixl ~ 1, (49)

(50)

(51)

In the above equations, l/I/(x, t), 'P/(x, t) and L/(x, t) are the inverse Laplace transforms
of l/J1(x, p), 'P1(x, p) and L1(x, p), respectively

'P t(x,p) = LX) 'Pj(x, t) exp ( - pt) dt,

Lt(x,p) = foro L;(x,t)exp(-pt)dt,

(52)

(53)

(54)

and 'P;(x, t) (i = 1, 2) are continuous bounded functions in the interval [-I, 1] with t
being a parameter.

5. NUMERICAL RESULTS AND DISCUSSIONS

5.1. Numerical inversion of the Laplace transform
The temperature field T* (x, y, p) in the Laplace transform plane can be obtained from

(16), (21), (23) and (26) once the integral equation (27) is solved. To get the temperature
T(x, y, t) in the time domain, we must make inverse Laplace transform from T*(x, y, p).
In solving eqns (47) for the mechanical problem, the functions L;(x, t) in the right hand
side also need to be evaluated from their Laplace transforms L1"(x, p). It is very difficult to
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make analytical inversions, and therefore, the numerical inversion is practical and useful.
Although there are a number of numerical methods, the one used here is due to Miller and
Guy (1966) which has been widely used in fracture dynamics (Sih 1977; Fan, 1990). A brief
description of the method is given in Appendix B.

5.2. Temperaturefield
We first discuss the numerical solution of the eqn (27). From symmetry, it is seen that

q>*(x, p) = - q>*( -x, p). Thus, the unknown function my be expressed as follows:

Ixl::::; 1 (55)

where T 2n - I (x) are the Chebyshev polynomials of the first kind. From the orthogonality
of T,,(x) it follows that the condition (28) is satisfied with the function q>*(x, p) given by
(55). By substituting (55) into (27) and using the relations:

Ixl < 1, n?;1 (56)

where Un - I (x) are the Chebyshev polynomials of the second kind, it is found that:

where Hn(x, p) are

fl k*(x, r,p)
Hn(x,p) = r;-- , T 2n - I (r) dr.

-I V I-r"

Ixl::::; I, (57)

(58)

To solve the functional equations (57), both sides of (57) are expanded into series of the
Chebyshev polynomials of the first kind. By comparing the coefficients and truncating the
series at the Nth term, we obtain:

where

N

L {Fmn+Gmn(p)}an(p) = Rm(p),
n= 1

m= 1,2, ... ,N, (59)

{
I,

Fmn = 0,
I::::;m ::::;n,

m>n
(60)

(61)

2;;' • )
R I = - exp ( - Ita ,

p
Rm =0, 2::::;m::::;N. (62)

Once the coefficients an(p) are obtained, the numerical solution of the integral equation
(27) can be calculated by (55) and the temperature in the Laplace transform plane can be
obtained from (16), (21), (23) and (26). The temperature in the time domain can be evalu
ated by using the numerical inversion of the Laplace transform described in Appendix B.

The temperature on the crack faces and the crack extended line (y = 0, x > 1) for
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1.0
I

0.8

0.5

8=1.0
---t=0.5
-·-t=3.0
--t = co

T(x .01

1.0

crack

Fig. 2. The temperature on the crack faces and the crack extended line (y = 0) (0 = I).

different times is depicted in Figs 2 and 3. Figure 2 shows the results for 0 = 1 and Fig. 3
for 0 = 2. It is clear that the jump of the temperature across the crack faces decreases with the
increase of nonhomogeneous parameter 0. Another fact is that the temperature reaches the
steady state in a shorter period of time for larger value of0 than smaller 0 (the dimensionless
time is about 3.5 for 0 = I and 1.5 for 0 = 2).

5.3. The effect ofnonhomogeneity of the material on the stress intensity factors
The stress intensity factors (SIFs) can be obtained once we get the solutions of the

integral equations (47). The numerical technique for solving (47) is similar to that for the
temperature problem. The final results are as follows:

'P I (x, t) I XJ

t/J I (x, t) = r;-::i = r;-::i L bn(t) T 2n (x)
yl-x yl-x n=1

'P 2(x,t) 1 XJ

t/J2(X,t)= r;-::i= r;-::i Lcn(t)T2n - 1(X),
y I-x y I-x n=1

(63)

where

N

L {(Fmn+G~ln)bn(t)+G;;ncn(t)} = 4R~(t),
n~l

N

L {G~nbn(t)+(Fmn+G~n)cn(t)} = 4R~(t),
n=l

m = 1,2, ... ,N

m = 1,2, ... ,N, (64)

1.0

I
0.8

O.

{
I,

Fmn = 0, m>n

3 =2.0
---t=0.5
_·-t= 1.0
--t=co

(65)

O.

0.2

Q.5 1.0

crack I

"_._._--

1.5 x 2.0

Fig. 3. The temperature on the crack faces and the crack extended line (y = 0) (0 = 2).
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i,j = 1,2, (66)

;' II klj(x,r)
Hj(x) =7,'- - T 2n - i + 1(r) dr,

-I V I-r l
i,j = 1,2, (67)

i = 1,2. (68)

The functions R~n(t) in (68) can be evaluated from their Laplace transforms R~,:(p)

i = 1,2, (69)

where Lt(x, p) are known functions of x and p given by (41).
Once the values of bn(t) and cn(t) are obtained, the stress intensity factors (SIFs) K[(t)

and KII(t) can be calculated by the following formulae:

(70)

In Figs 4-7, the SIFs K[ and K II are plotted vs the dimensionless time t for a = I and

-0.8
o
>< -0.6
~
til

-0.4

-0.2

8=1.0,)'=0.1
--/3=-2.0
---P=-1.0

KI

KI

-"""''-----~~~~-~

0.5 1.0 1.5 t CD

Fig. 4. The variation of SIFs with time I for different {3, <5 and y.

-0.8
::>

'" -0.6
LU>

f)

-0.4

-0.2

8=1.0,)'=0.4
--P=-2.0
---P=-I.O

K.

0.5 1.0 1.5 CD

Fig. 5. The variation of SIFs with time I for different {3, ,) and y.

=

1.00.5

8=2.0, )'=0.1
--P=-2.0
---P=-1.0

_ -0.8j
'0

><U>- 0.6
u:
(/)

-0.4

-0.2

I ..........,

1.5 t CD

Fig. 6. The variation of SIFs with time I for different {3, <5 and y.
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-0.8 8=2.0. 1'=0.4
--11=-2.0
---(l= - 1.0

=

Fig. 7. The variation of SIFs with time t for different p, () and y.

different values of the mechanical nonhomogeneous parameter p and thermal non
homogeneous parameters 15 and y. The nonhomogeneous parameter e, as stated before,
doesn't affect SIFs. Since KII doesn't vary with pdramatically, only the results for p = - 2
are given here for KII • The following facts can be found from these figures. Firstly, SIFs
increase with the time from their initial zero value to the maximum values at the steady
state in the range of p, 15 and y considered in this paper. SIFs reach the steady state values
at about t = 1.5 to 2.0. Secondly, KII can be reduced substantially by selecting p, 15 and y
appropriately. The maximum absolute value of KII for (P, c5, y) = (-2.0,2.0,0.1) is only
about 40% of that for the homogeneous medium (Tsuji et al., 1986). Finally, K. is negative
for the nonhomogeneous material in the range of p, c5 and y considered in this paper while
it is positive for the homogeneous medium (Tsuji et al., 1986). In fact, there exist values of
p, 15 and y at which K1 becomes zero and when p, 15 and yare varied in an appropriately
selected region, K. becomes negative so that the contact of the crack faces would occur.
The results presented here without considering this effect may not be exactly correct but
would be more conservative, since the contact of the crack faces will increase the friction
between the faces and make heat transfer across the crack faces easier. Thus the stress
intensity factors would be lowered by these two factors. Recalling that one of the objectives
of developing FGM materials is to reduce thermal stresses and thermal stress intensity
factors, the applicability of the present solution may not be seriously affected without
considering the contact of crack faces. For a more clear comparison, the SIFs for the
homogeneous medium (P, c5, y and e all are zero) vs the dimensionless time t are depicted
in Fig. 8 for a = 1 and 2. The results agree with those by Tsuji et aJ. (1986). And the SIFs
at (P, <5, y) = (-2.0,2.0,0.1) for a = 1 and 2 are shown in Fig. 9. In fracture mechanics,
we know that the maximum of the cleavage stress U(J near the crack tip can roughly
characterize the nature of crack initiation under mixed mode fracture. In Fig. 10, the
maximum of the cleavage stress U(J for both homogeneous medium and (P, c5, y) = (- 2.0,
2.0, 0.1) are depicted for a = I and 2. It is clear that the reduction in the maximum value
is significant. From these results, some suggestions on fabrication of FGM materials may
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....-0.8
u.;
(ij

-0.6
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0.4

--0=1
---0=2

Fig. 8. The variation of SIFs with time t for the homogeneous medium.
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Fig. 9. The variation ofSIFs with time t for (P, <5, y) = (-2.0,2.0,0.1).

a =I
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~ 0.8

- I

~
- 0.6

Fig. 10. The variation of the maximum cleavage stress (10 with time t for the homogeneous medium
and (P, <5, )') = ( - 2.0, 2.0,0.1).

be made. Firstly, the elastic modulus of the ceramic (exposed to high temperature) in FGM
should be higher than that of the metal ([3 < 0). Secondly, the heat conductivity and the
thermal expansion coefficient of the ceramic should be lower than that of the metal (15 > 0
and y > 0). And finally, the variation in thermal expansion coefficient from the ceramic to
the metal should be less dramatic than that in elastic modulus and heat conductivity (y < 15
and y < -[3),
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APPENDIX A. FUNCTIONS USED IN SECTION 4

and

hr,m = -s,+exp[(s,-s2)aj[sl+as2(S2- SI)]

hl2W = l-exp[(s,-s2)aj[l-a(s2- s,)(I-as2)]

h21 W = l-exp[(s,-s2)a][l+a(s2-s r)]

h22W = a2(s2- s ,)exp[(sl-s2)a],

};,m = [-Phil +S2(Sr- S2)h I2 ](Sr- S2)-3

};2W = [ - 2~hll - ~(s, - s2)h'2](SI - S2)-3

.h,m = [-Ph2,+S2(SI-S2)h22 ](Sr- S2)-3

.h2(~) = [-2~h2,-~(S,-S2)h22](SI-S2)-3,

gl(~'p) = -sifj-2sd4+fi

g2(~'P) = -(2s2+P)sifj-(3s2+2P)s2!ch

g3(~'P) = exp( -S2a)[(1 -as2).h-asi};]-(P+y- III)C2r -(P+Y-1I2)C22

g4(~'P) = exp (-S2a)[(1 +as2)}; +af2]- CJ1 -Cn ,

};(~,p) = C2, exp [-(P+Y-IIr)a] +C22 eXp [- (P+Y-Jl2)a]

.h(~,p) = (P+Y-III)C2r exp [-(P+Y-II,)a] + (p+y- 112)C22 exp [- (P+Y-1I2)a]

fj(~,p) = CI2 -C21 -Cn

f,.(~,p) = -(P+Y-Jl,)C2r-(P+Y-1I2)(C22-Cr2)

fi(~,p) = (P+Y-II,)2C2r +(P+Y-1I2)2(Cn -Cd +D(~,p)

.h.(~,p) = (P +1' - 11,)2(1'-1I,)C21 + (P + 1'- 112)2(1'- 112)(C22 - C12) +yD(~,p).

In these functions, CI2(~, p), C21 (~, p) and Cn(~, p) are given by (34) and D(~, p) is given by (26).

APPENDIX B. NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

Assume that the Laplace transform of any function F(t) is known as:

F*(p) = L'" F(t) exp (-pt) dt.

To begin with, the following variable substitutions are made:

T=2exp(-rJ t )-I,

F(t) =F[-~lnC;T)J=W(T).

(AI)

(A2)

(A3)

(A4)

(BI)

(B2)

(B3)



218 Z.-H. JIN and N. NODA

Thus the eqn (BI) takes the form:

I fl (I +''f/.~1
pep) = 2'1 _I -2-) We,) do.

The function W(t) is now expanded into a series of the Jacobi polynomials:

Y.

We,) = L c"P),o...,,(,),
11=0

(B4)

(B5)

where the Jacobi polynomials are defined as:

( I)" d"
p~,o.,.,,(,) = -2" , (l+r)-"'~d"[(l-r)"(l+,)"'+"),

n. ,
(B6)

which form an orthogonal complete set offunctions on the interval [-I, I). Now F*(p) is evaluated at the discrete
points along the real positive p-axis in the Laplace transform plane given by:

PI = (w+ I +i)'1, i= 0, 1,2, .... (B7)

where w > - I and '1 > 0 are real parameters.
By substituting (B5) into (B4) and using the orthogonality of Jacobi polynomials, the following set of

equations is obtained to determil}e the coefficients c":

i k k(k;I) ... [k-(n;I») c"='1P[(w+l+k)'1), k= 1,2,... (B8a)
,,~o ( +w+ 1)( +w+2) ... ( +w+ I +n)

--~ = '1F*[(w+ 1)'1), k = O. (B8b)
w+1

Once a finite number of N coefficients c" are calculated out, the function F(I) can be approximately evaluated
by the following formula:

,'V /II

F(t) = We,) ~ L c"p~,o'''')(r) = L c"p~,o.W)[2 exp (-'11) -I].
11= 0 11= 0

The parameters w. '1 and N are chosen such that F(t) can be best described.

(B9)


